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Abstract 

New drugs are needed for relapsed acute lymphoblastic leukemia and preclinical evaluation 

of the MEK inhibitor, selumetinib, has shown excellent activity in those with RAS pathway 

mutations. The proapoptotic protein, BIM is pivotal in the induction of cell death by both 

selumetinib and glucocorticoids, suggesting the potential for synergy. Thus, combination 

indices for dexamethasone and selumetinib were determined in RAS pathway mutated acute 

lymphoblastic leukemia primagraft cells in vitro and were indicative of strong synergism (CI 

<0.2; n=5). Associated pharmacodynamic assays were consistent with the hypothesis that the 

drug combination enhanced BIM upregulation over single drug alone. Dosing of 

dexamethasone and selumetinib singly, and in combination in mice engrafted with primary 

derived RAS pathway mutated leukemia cells, resulted in a marked reduction in spleen size 

which was significantly greater with the drug combination. Assessment of the central nervous 

system leukaemia burden showed a significant reduction in drug treated mice, with no 

detectable leukemia in those treated with the drug combination. These data suggest that a 

selumetinib-dexamethasone combination may be highly effective in RAS pathway mutated 

acute lymphoblastic leukemia and an international phase I/II clinical trial of dexamethasone 

and selumetinib (Seludex trial) is underway for children with multiple relapsed/refractory 

disease. 



3 
 

Introduction 

Progress in the treatment of childhood acute lymphoblastic leukaemia has been exceptional 

and using contemporary regimens, sustained remission is achievable in almost 90% of 

children 1, 2. However, the outcome of children who relapse is much poorer and remains a 

frequent cause of death in children with cancer 3-5. Since further intensification with 

traditional agents is often associated with significant toxicity and limited success, new 

therapies are clearly needed. One promising avenue that may deliver novel drugs comes from 

our previous work showing that mutation in genes which activate the Ras/Raf/Mek/Erk 

pathway such as NRAS, KRAS, FLT3, and PTPN11 are highly prevalent in relapsed ALL and 

importantly, mutated ALL cells are differentially sensitive to the MEK inhibitor, selumetinib 

(AZD6244, ARRY-142886)6-8. In contrast, RAS pathway wildtype ALL cells were 

insensitive to MEK inhibition, both in vitro and in vivo6. In the IBFMREZ2002 clinical trial 

for relapsed ALL, RAS pathway mutations were associated with high risk features such as 

early relapse, central nervous system (CNS) disease and chemo-resistance and a poorer 

overall survival was seen in patients with KRAS mutations 6. In the UKALLR3 trial, a poorer 

survival was seen in children with NRAS mutations 7. Thus, this genetic subtype of relapsed 

ALL clearly warrants exploratory therapies. 

 

The Ras/Raf/Mek/Erk cascade regulates diverse cellular functions, including cell 

proliferation, survival, differentiation, angiogenesis and migration and is deregulated in 

numerous cancers, including ALL 9-13. Classic activation is initiated by ligand binding to 

receptor tyrosine kinases at the cell surface and via Ras, then Raf activates MEK1/2 which 

has restricted substrate specify for extracellular signal–regulated kinase 1 and 2 (Erk).  ERK 

is a potent kinase with over 200 nuclear and cytoplasmic substrates including transcription 
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factors such as the ETS family and proteins involved in the apoptotic machinery, such as the 

proapoptotic BIM. Phosphorylation of the predominant form of BIM (BIMEL) by ERK1/2, 

targets it for ubiquitination and proteasomal degradation and may also directly hinder its 

interactions with Bax 14, 15 and selumetinib-induced apoptosis is associated with BIM 

induction.16 

 

Relapsed ALL is generally more drug resistant than newly diagnosed disease and despite the 

use of more intensive chemotherapeutic regimens at ALL relapse, there are lower rates of 

complete remission and end of induction MRD negativity 2, 3. Assessment of in vitro drug 

sensitivity of primary ALL samples have shown that blasts at relapse are significantly more 

resistant to many of the drugs used in upfront treatment protocols, with the highest level of 

drug resistance seen to glucocorticoids (GC)17, 18. GC, such as dexamethasone, are pivotal 

agents in the treatment of all lymphoid malignancies due to their ability to specifically induce 

apoptosis in developing lymphocytes and induction of pro-apoptotic BIM is key to this effect 

19. Thus, BIM is a common effector in both selumetinib and dexamethasone induced 

apoptosis, suggesting the potential for synergy. In addition, GC resistance in ALL has been 

associated with enhanced activation of the pathway and its inhibition has led to GC re-

sensitisation 20-22. These effects may be more pronounced in the context of RAS pathway 

mutated ALL, therefore, we have preclinically evaluated the combination of dexamethasone 

and selumetinib in vitro and in an orthotopic mouse model engrafted with primary-derived 

ALL cells and shown pronounced drug synergism in RAS pathway mutated ALL. These data 

suggest that this drug combination may be highly effective in this significant subgroup of 

patients and has led to the Seludex trial, an international Phase I/II expansion study for the 

treatment of relapsed/refractory RAS pathway mutated ALL. 
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Methods  

Additional methods are found in the supplementary material. 

Compounds and formulation 

Selumetinib was kindly provided by AstraZeneca (Cheshire, UK) and for the in vitro studies, 

was dissolved in DMSO to a concentration of 100mM and stored in single use aliquots at       

-20oC. Dexamethasone was purchased from Sigma-Aldrich (Dorset, UK), dissolved in 

ethanol at 20mM and stored at -20oC. For in vivo studies, selumetinib was prepared as a 

suspension in 0.5% hydroxypropyl methylcellulose + 0.1% polysorbate 80.  

 

Patient Samples 

Primagrafts were generated in NOD SCID γ null (NSG) mice using ALL cells from bone 

marrow samples of children presenting or relapsing with ALL and accessed through the 

Newcastle Haematology Biobank, after appropriate consent (reference numbers 2002/111 and 

07/H0906). Clinical details of the patients are given in Table 1. Mutational screening for RAS 

pathway mutations and assessment of pathway activation by western blotting of p-ERK was 

performed as previously described 8, 23.   

 

In vitro drug sensitivity and synergy 

Freshly harvested primagraft cells were suspended in RPMI1640 with 15% fetal bovine 

serum and plated out in triplicate at a density of 5x105 cells/100μl/well into 96-well plates and 

treated with a range of dexamethasone (0.1nM to 10μM) or selumetinib concentrations (1nM 

to 100μM). After 96 hours, cytotoxicity was assessed using the CellTiter 96 Aqueous One kit 
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(Promega, Southampton, UK). The results were averaged and expressed as a percentage of 

the control vehicle. Survival curves were plotted and growth inhibitory (GI50) values 

calculated using GraphPad Prism software (GraphPad software Inc., San Diego, CA, USA). 

Drug combination experiments were analysed for synergistic, additive, or antagonistic effects 

using the combination index method developed by Chou and Talalay 24. Briefly, primagraft 

cells were treated with fixed dose ratios based on the GI50 values of each drug (x0.25, x0.5, 

x1, x2 and x4) and evaluated by median effect analysis using CalcuSyn software (Cambridge, 

UK). The dose-effect curve for each drug alone is determined using the median-effect 

principle and is compared to the effect achieved with a combination of the two drugs to 

derive a combination index (CI) value.  

 

Pharmacokinetic analyses 

Plasma pharmacokinetics of selumetinib and dexamethasone were determined using non 

compartmental analysis in female CD1 mice after oral dosing. Plasma concentrations of both 

drugs were measured by LCMS (API4000 LCMS/MS, Applied Biosystems, California, 

USA), attached to a Perkin Elmer chromatography system (Perkin Elmer Ltd, Beckonsfield, 

UK) and calibrated using standards prepared in blank mouse plasma. In both cases separation 

was performed using a Gemini 3µ C18 110A column (50x3mm) fitted with a 4x2mm C18 

cartridge (Phenomenex, Macclesfield, UK).  

 

In vivo experiments 

All experiments were performed under the UK home Office NCL- PLL60/4552.  Drug 

efficacy studies were performed as previously described 6. Briefly, primagraft cells were 
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injected intrafemorally and mice were monitored for engraftment every 3-4 weeks by tail 

vein bleed. Blood was red cell lysed and analysed by flow cytometry on a BD FACSCanto II, 

using anti human CD10, CD34 and CD19 and anti-mouse CD45 antibodies. Human 

leukaemia cells were gated and expressed as a % of the total number of nucleated cells. Once 

the level of human leukaemia cells reached >1% of total cells, mice were randomised into 

control vehicle (0.5% hydroxypropyl methylcellulose + 0.1% polysorbate 80) and drug 

treatment groups (6 mice per group) were dosed with dexamethasone, selumetinib or both, by 

oral gavage. Selumetinib was dosed at 25mg/kg BID, while the dexamethasone dosing varied 

in each study. Tumour burden was monitored weekly by flow cytometry. Pharmacodynamic 

studies were performed in highly engrafted mice which were dosed for 72 hours. Spleens 

were removed following euthanasia and assessed by flow cytometry to confirm an 

engraftment of >85%. Cells were lysed and analysed by western blotting for levels of p-ERK, 

ERK2, BIM, MCL1 and α-Tubulin, as described above. 
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Results 

Selumetinib and dexamethasone show synergy in vitro in RAS pathway mutated ALL 

and is associated with enhanced induction of BIM. 

To investigate possible synergism, the R3F9 cell line and primagraft ALL cells, with and 

without Ras pathway mutations (n=8) were treated with dexamethasone, selumetinib and the 

drug combination at 0.25x, 0.5x, 1x, 2x and 4x their respective GI50 concentrations and 

viability data evaluated by median effect analysis. CI for all RAS pathway samples were 

indicative of strong synergy with a mean of 0.1 (range, 0.02-0.15) (Figure 1A, B and 

Supplementary Figure 1). Synergism was not observed in ALL primagraft cells without RAS 

pathway activation, CI >1.2. Mechanistic assessments were performed with GI50 

concentration of both drugs for 24 hours.  As expected, ALL cells treated with selumetinib 

resulted in almost complete inhibition of ERK phosphorylation and downregulation of MCL1 

levels.  Dexamethasone treatment also downregulated pERK levels. Treatment with 

dexamethasone or selumetinib was associated with increased levels of BIM which was 

further enhanced with the drug combination. A representative western blot and a histogram of 

the combined densitometry values (n=4 PDX) are shown in Figures 1C and Supplementary 

Figure 2A. The apoptotic marker, cleaved PARP was enhanced with the drug combination in 

some, but not all PDX samples, at this time point (Supplementary Figure 2B).  While the loss 

in cell viability in non-dividing PDX ALL cells must be due to increased cell death, we also 

showed for the NRAS mutated R3F9 cell line, enhanced apoptosis with the drug combination 

(Supplementary Figures 2 C and D) and BIM knockdown reduced the effect (Supplementary 

Figures  2E and F). There were similar levels of induction of the GR target gene, GILZ in 

both dexamethasone and drug combination treated cells suggesting that enhanced GR 

transcriptional activity is not a component of the synergism (supplementary Figure 3). 

Synergism between selumetinib and other drugs for example, gemcitabine, is highly schedule 
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dependent and sequential rather than simultaneous dosing appears optimal 25. Thus, we 

assessed synergism in primagraft ALL cells dosed simultaneously or with only selumetinib or 

dexamethasone for 24 hours followed by both drugs for an additional 72 hours, prior to cell 

viability assessments. We saw similar synergism across all experimental parameters (Figure 

1D) and thus we selected simultaneous drug administration in subsequent in vivo studies.   

 

Pharmacokinetic studies define clinically relevant oral dose and exclude drug-drug 

interactions 

To determine the optimal oral dose of dexamethasone that will achieve clinically relevant 

serum levels, pharmacokinetic studies were performed in CD1 mice. Mice (n=27) were dosed 

with 0.5, 1 and 5mg/kg dexamethasone by oral gavage and blood samples taken at 15min, 

30min, 1hr, 3hr, 6hr and 24hr and serum dexamethasone levels analysed (Supplementary 

Figure 4A).  A  Tmax of 60 minutes was observed, with Cmax values of 48.9, 94.7 and 766.5 

ng/ml following 0.5, 1 and 5mg/kg doses, respectively. Given the reported Cmax average of 

40-90 ng/ml  in recent UK and American ALL trials, 1mg/kg was deemed the most 

appropriate dose level 26, 27. 

Dexamethasone can induce cytochrome P450 forms, including CYP3A4, the principal 

isoform responsible for selumetinib oxidative metabolism, therefore we performed 

selumetinib pharmacokinetic analyses, alone (25mg/kg) and after co-administration of 

1mg/kg dexamethasone (Supplementary Figures 4B and C). A Tmax of 60 minutes was 

observed, with Cmax values for selumetinib of 4.74ug/ml compared to 5.49 ug/ml, 

respectively (p>0.05, student t test). Other parameters were also similar (Supplementary 

Figure 4C), indicative of no drug-drug interaction (p>0.05 for all).    
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Selumetinib and dexamethasone show synergy in vivo and clear CNS disease 

The drug combination was evaluated in vivo and compared to single drug and control vehicle  

in primagrafts derived from diagnostic ALL (NRAS Q61R and KRAS G12D) and a relapse 

(KRAS G13D).  Scheduling and dosing was by oral gavage and is shown in Figure 2 A-G. 

Due to significant weight loss (>20%) associated with dexamethasone, dosing could not be 

prolonged, even when the dose was lowered from 1mg/kg bid to 0.25mg/kg sid. There was no 

additional toxicity observed in mice given the drug combination. Nevertheless, at the end of 

the dosing period, there was a significant reduction in spleen size with selumetinib and 

dexamethasone alone but was statistically lower in mice given the drug combination, with 

spleen weights approaching those of healthy mice (combined data are shown in Figure 2G) 

(p<0.001).  In addition, brains were assessed for the depth of leukaemia infiltration in the 

leptomeninges. For mice engrafted with L897 and L779 primagraft cells, there was a 

significant reduction in leukaemic infiltration in drug treated mice, with a mean and SD of 

66.3µ+/-100.6 for CV, compared to 3.1µ +/- 12.5 for dexamethasone and 5.37µ +/- 21.475 

for selumetinib (Supplementary Figure 5A). Mice treated with the drug combination showed 

no leukaemic infiltration (p<0.05 for all by student t test). For L779, there was demonstrable 

CNS disease once peripheral ALL exceeded 1% i.e. pre-dosing (Supplementary Figure 5B). 

Clearance of CNS disease in mice engrafted with L829R cells was unevaluable due to 

minimal CNS leukaemia in both CV and drug treated mice. Pharmacodynamic assessment of 

engrafted spleens after short term dosing were consistent with observations in vitro; 

inhibition of ERK phosphorylation and lower MCL1 levels associated with selumetinib 

dosing, similar induction of GILZ with dexamethasone dosing, and modest enhancement of 

BIM levels with the drug combination (Figure 3A-D).  Annexin V binding in circulating ALL 

cells, as detected by multi-parameter flow cytometry, increased in all drug treated mice and 

was highest for the drug combination at both 24 hours and 48 hours (Figure 3E). 
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Discussion 

Selumetinib is a potent, selective, allosteric inhibitor of MEK1/2 with demonstrated anti-

tumour activity and a favourable toxicity profile. It has progressed to phase III clinical trial 

for several types of adult solid cancers 28-30. In the paediatric setting, selumetinib has recently 

undergone phase I clinic testing as a monotherapy in children with BRAF-driven 

recurrent/refractory paediatric low grade glioma which defined a maximum tolerated dose of 

25 mg/m2/dose BID 31. Sustained responses (1 complete, 7 partial) were observed in some 

children and selumetinib was well tolerated, with the most common toxicity being rash. In 

addition, a phase I trial of selumetinib in children with neurofibromatosis type 1 and 

inoperable plexiform neurofibromas, showed partial responses in 17 of 24 children (71%) and 

reported no excess toxicity 32.  

 

While we have previously shown single agent preclinical activity in ALL, selumetinib like 

other MEKi, is likely to show maximal therapeutic benefit in combination. Therefore,  in 

phase III clinical trials for advanced non-small-cell lung cancer and uveal melanoma, 

selumetinib has been evaluated in combination with docetaxel and dacarbazine, respectively 

33. In this current study, we show significant synergy of selumetinib with the synthetic 

glucocorticoid dexamethasone in vitro and in an orthotopic mouse model engrafted with RAS 

pathway activated primary-derived ALL cells. Importantly, we demonstrate this across a 

range of cytogenetic subgroups, including high hyperdiploidy, B-other, t(17;19) and t(1;19). 

Pharmacokinetic data shows clinically relevant drug levels and optimal scheduling and in 

vivo pharmacodynamic analyses confirmed impact on drug targets and apoptosis. 

Mechanistically, the synergism was associated with enhanced induction of the proapoptotic, 

BIM and decreases in the anti-apoptotic BH3 only protein MCL1. BIM is a BH3 only protein 
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that binds to anti apoptotic BCL2 family members, including MCL1 and BCL2, to liberate 

and directly activate bax and bak which then elicit caspase dependent apoptosis.  BIM is an 

effector protein in both GC and MEK inhibitor response and reducing pERK activity 

enhances BIM levels as well as decreasing MCL1 protein levels by increasing its turnover 34. 

Therefore, we propose that the drug combination enables BIM to more completely inhibit 

anti-apoptotic BH3 only proteins and directly activate BAX and BAK. Others have reported a 

direct effect of MEK inhibition on GR transcriptional activity which may also be contribute 

to the synergism, but this did not appear significant in our experiments at the time point 

chosen22. Epigenetic regulation of the BIM locus due to acetylation has been described in a 

subgroup of GC resistant ALLs and is associated with BIM under expression. Such 

individuals may be expected to have a suboptimal response to the selumetinib/dexamethasone 

drug combination 35. However, the incidence of acetylated BIM in the relapsed setting and in 

the context of RAS pathway mutations has not been described to date. Our synergism data are 

supported by a study from Jones et al., who used an integrated approach to understand GC 

resistance and relapse and identified MAPK pathways as a contributory factor22. In this study, 

knockdown of MEK2 or MEK inhibition enhanced response not only to GC but to other 

chemotherapeutics and was not dependent on the presence of RAS pathway mutations, 

suggestive of activation of the pathway through alternative routes. We have previously shown 

excellent correlation between pERK activation and the presence of RAS pathway mutations, 

although we too noted some rare exceptions which in our study were in part explained by the 

presence of chromosomal translocations, including Ph+ and 11q236.  

 

Drug synergies have also been shown for MEK inhibitors with both traditional 

chemotherapeutics such as gemcitabine and targeted agents including PI3K/AKT inhibitors 
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36, 37 and the BCL-XL inhibitor, Navitoclax (ABT263)38.  Inhibiting the other effector 

pathways of RAS is clearly a rational strategy, however, while we have observed synergism 

of MEK and AKT inhibition in RAS pathway mutated ALL in vitro, the synergism was 

considerably weaker than that observed with dexamethasone (unpublished observations). In 

solid cancers, increased levels of BIM protein are also observed with MEK inhibition, but is 

inactive due to sequestration by high levels of BCL-XL. In the presence of Navitoclax, BIM 

is released, triggering an apoptotic response 38.  

  

We have previously reported a reduction of CNS leukaemia in selumetinib treated mice and 

now confirm this in additional primagraft samples and show complete absence of leukaemic 

infiltrate in the leptomeninges of mice treated with the selumetinib/dexamethasone drug 

combination 6. The identification of CNS disease in mice with similar levels of ALL 

engraftment prior to drug dosing, suggests that the drug combination completely eradicated 

the leukaemia in situ. This is a highly significant finding given the association of RAS 

pathway mutations and CNS disease at relapse that we previously reported in the 

IBFMREZ2002 clinical trial and the fact that in contemporary regimens, the proportion of 

CNS relapses is increasing39. 

 

A key question, relevant to MEKi therapy, is whether Ras pathway mutations are initiating 

events in ALL or secondary, cooperating genetic events and there is evidence for both 

(reviewed in 13).  However, for targeted therapies to be successful, the target is ideally present 

on all tumour cells and we and others have reported that mutations can be subclonal, 

particularly at diagnosis, and can be gained or lost at relapse 6, 40-42.  Importantly, we have 

also shown that mutations at relapse are in the major ALL clone, are often selected from a 
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minor subclone at diagnosis and that apparent ‘loss’ of a Ras pathway mutation can be 

‘replacement’ of one for another 8, 43, 6.   This suggests a dependence on the pathway that can 

be exploited by MEK inhibition and as we show here, is enhanced with dexamethasone co-

exposure. 

 

Based on these promising data, an international  phase I/II clinical trial of oral 

dexamethasone and selumetinib (Seludex) is underway in RAS pathway mutated, multiple 

relapse/refractory ALL. A parallel, national study in adult disease at first relapse is also 

ongoing, since the prevalence of RAS pathway mutations and association with poor 

prognosis has also been noted 44. One relevant observation from selumetinib and other Mek 

inhibitor trials is that the most common toxicity is inflammatory rash. In severe cases, the 

recommended treatment is oral glucocorticoids and no adverse effects of drug co-

administration have been reported 45. Thus, if efficacy is seen in the proposed clinical trials, 

selumetinib and other Mek inhibitors may be a much needed novel therapy for a substantial 

number of children with high risk, relapsed disease. There may also be a role for the drug 

combination in the upfront treatment of RAS-driven, high risk ALL, to avert relapse. 
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Table 1. Clinical features of patients and characterisation of PDX. 

Patient 
ID 

Sex 
Age at 

Diagnosis 
(years) 

Cytogenetics 
 

End of 
Induction MRD 

Ras pathway 
mutation 

 
Clonality 

 
pERK 

L779 M 5.5 
High 

Hyperdiploid 
Intermediate 

NRAS 
(Q61R) 

Clonal Positive 

L897
a
 M 16.8 B other High risk 

KRAS 
(G12D) 

Clonal Positive 

L914 F 7.3 
High 

Hyperdiploid 
Low risk 

CBL/FLT3 
Large 

del/∆836 
Clonal Positive 

L829b 
relapse 

F 3.1 
High 

Hyperdiploid 
High risk 

KRAS 
(G13D) 

Clonal Positive 

L707c F 16.5 t(17;19) High risk 
KRAS 

(insertion) 
Clonal Positive 

LX825 F 14.7 B other High risk Wildtype N/A Negative 

L920 F 4.4 B other Low risk Wildtype N/A Negative 

L848 M 2.5 t(12;21) Low risk Wildtype N/A Negative 

a
patient suffered on-treatment CNS relapse 

bL829 at diagnosis was NRAS G12D 

C patient relapsed with the same KRAS mutation 

B-other group:- 

L897 is negative by FISH for ETV6-RUNX1, BCR-ABL1, MLL and TCF3-PBX1/HLF  

LX825 is negative by FISH for ETV6-RUNX1, BCR-ABL1, MLL, CRLF2, IKZF1, PAX5, IGH 
and  PDGFRB 
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Figure Legends 

Figure 1. Selumetinib and dexamethasone show synergy in vitro in RAS pathway 

mutated ALL and is associated with enhanced levels of BIM 

Viability curves of Ras pathway mutant ALL cells (L829R) with individual drugs and the 

selumetinib/dexamethasone drug combination (A). Histogram of combination indices (CI) for 

the selumetinib/dexamethasone combination in wild type and Ras pathway mutant ALL cells; 

mutated genes are shown in brackets (B). Western analyses of ALL cells (L829R) treated 

with CV or GI50 values of selumetinib (10 µM) and dexamethasone (10 µM), singly and in 

combination (C).  A representative median effect curve (data shown are from L897) after 

simultaneous drug dosing and with each drug added 24 hours prior to the partner drug, 

followed by a further 72 hours incubation (D). 

 

Figure 2. Selumetinib and dexamethasone show synergy in vivo in RAS pathway 

mutated ALL 

In vivo drug efficacy studies of single drug and combination in RAS pathway mutated ALL 

showing dose scheduling and peripheral blood monitoring before and during dosing and 

spleen weights at the end of dosing for L779-NRAS (A and B, respectively),  L897-KRAS (C 

and D) and L829 relapse- KRAS (E and F). For L779, mice were dosed with selumetinib at 

25mg/kg and dex at 1mg/kg twice daily and then once daily after a recovery period. For 

L897, selumetinib was 25mg/kg and dex at 0.5mg/kg (BID), with the dex being increased to 

1mg/kg (SID) following a recovery period and for L829R, selumetinib was dosed at  

25mg/kg (BID) and dex at 0.25mg/kg (SID). Mean and SD are shown for combined spleen 

weight data for all 3 efficacy experiments (G) (One way ANOVA with Tukeys multiple 
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comparison test, ***p <0.001, **** p<0.0001;  n=17 for CV, n=17 for Sel, n=15 for Dex and 

n=14 for Sel and Dex treated mice). 

 

Figure 3. Pharmacodynamic analyses in ALL cells after drug dosing in vivo, supports in 

vitro data. 

Western analyses of spleen cells from mice engrafted with RAS pathway mutant ALL cells 

after 72 hours of dosing (A, L779; NRAS; 25mg/kg selumetinib and 1mg/kg dexamethasone 

bid and B, L897; KRAS; 25mg/kg selumetinib and 0.5mg/kg dexamethasone bid).  

Histograms of densitometry from western analyses, showing mean +/-SEM (3-4 mice per 

treatment) (One way ANOVA with Tukeys multiple comparison test, * p<0.05, **p <0.01, 

(C). Relative expression of GILZ mRNA (mean and SEM) compared to CV as quantified by 

RQPCR expression in all 3 PDX experiments, again after 72 hours dosing (ANOVA as 

before **p<0.01; ns, not significant (D). Histograms of annexin V positive ALL cells (mean 

+/-SEM) determined by flow cytometric analyses of peripheral blood at 24 and 48 hours  

after dosing (2 mice per group)(E). 
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